
CS 537 Notes, Section #20: Clock

Algorithm, Thrashing

This is an efficient way to approximate LRU.

Clock algorithm: keep "use" bit for each page frame, hardware sets the appropriate bit on

every memory reference. The operating system clears the bits from time to time in order to

figure out how often pages are being referenced. Introduce clock algorithm where to find a

page to throw out the OS circulates through the physical frames clearing use bits until one is

found that is zero. Use that one. Show clock analogy.

Fancier algorithm: give pages a second (third? fourth?) chance. Store (in software) a counter

for each page frame, and increment the counter if use bit is zero. Only throw the page out if

the counter passes a certain limit value. Limit = 0 corresponds to the previous case. What

happens when limit is small? large?

Some systems also use a "dirty" bit to give preference to dirty pages. This is because it is

more expensive to throw out dirty pages: clean ones need not be written to disk.

What does it mean if the clock hand is sweeping very slowly?

What does it mean if the clock hand is sweeping very fast?

If all pages from all processes are lumped together by the replacement algorithm, then it is

said to be a global replacement algorithm. Under this scheme, each process competes with all

of the other processes for page frames. A per process replacement algorithm allocates page

frames to individual processes: a page fault in one process can only replace one of that

process' frames. This relieves interference from other processes. A per job replacement

algorithm has a similar effect (e.g. if you run vi it may cause your shell to lose pages, but will

not affect other users). In per-process and per-job allocation, the allocations may change, but

only slowly.

Thrashing: consider what happens when memory gets overcommitted.

 Suppose there are many users, and that between them their processes are making

frequent references to 50 pages, but memory has 40 pages.

 Each time one page is brought in, another page, whose contents will soon be

referenced, is thrown out.

 Compute average memory access time.

 The system will spend all of its time reading and writing pages. It will be working

very hard but not getting anything done.

 Thrashing was a severe problem in early demand paging systems.

Thrashing occurs because the system does not know when it has taken on more work than it

can handle. LRU mechanisms order pages in terms of last access, but do not give absolute

numbers indicating pages that must not be thrown out.

What can be done?

 If a single process is too large for memory, there is nothing the OS can do. That

process will simply thrash.

 If the problem arises because of the sum of several processes:

o Figure out how much memory each process needs.

o Change scheduling priorities to run processes in groups whose memory needs

can be satisfied.

Copyright © 1997 Barton P. Miller

Non-University of Wisconsin students and teachers are welcome to print these notes their

personal use. Further reproduction requires permission of the author.

